Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(E)-5-[Hydroxyimino(phenyl)methyl]-1-methyl-3,4-dihydro-2H-pyrrolium trifluoromethanesulfonate

Jean-Marie Coustard, ${ }^{\text {a* }}$ Ronan Le Toquin, ${ }^{\text {b }}$ Roland Leo, ${ }^{\text {b }}$ Werner Paulus ${ }^{\text {b }}$ and Alain Cousson ${ }^{c}$
${ }^{\text {a }}$ Faculté des Sciences, Laboratoire de Chimie 12, UMR CNRS 6514, Avenue du Recteur Pineau, F-86022 Poitiers, France, 'baboratoire de Chimie du Solide et Inorganique Moléculaire, UMR 6511 CNRS, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, F-35042 Rennes, France, and 'Laboratoire Léon Brillouin, CEA CNRS, CEN Saclay, F-91191 Gif-sur-Yvette CEDEX, France Correspondence e-mail: jean-marie.coustard@gmx.net

Received 7 November 2000
Accepted 18 December 2000
The cation of the title compound, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, exists as an E-configured hydroxyimino derivative conjugated with a nearly planar iminium system. The twist angle between the phenyl ring and the oxime group is $72.2(2)^{\circ}$. An $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links the oxime group of the cation to the anion.

Comment

1-Heterosubstituted 2-nitroethylene derivatives undergo polyprotonation in trifluoromethanesulfonic acid that leads to loss of water and formation of hydroxynitrilium ions, or O-protonated nitrile oxides, which are fairly electrophilic (Coustard, 1995, 1996, 1999). In this medium, 1-methyl-2nitromethylenepyrrolidine, (I), also undergoes this transformation, leading to the corresponding hydroxynitrilium ion (see Scheme below), which reacts with benzene to afford a stable dication observable either by ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR spectroscopy. Quenching with water affords the title compound, (II), which is stable in acidic or neutral aqueous solution. In basic solution, deprotonation of the OH oxime group leads to formation of a conjugated nitroso derivative which dimerizes readily to give a mixture of isomers. In compound (II), the presence of a trifluoromethanesulfonate anion, a phenyl ring and an oxime (or hydroxyimino) group were expected from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{NMR}$ data (Coustard, 1999). However, the configuration of the oxime is important from a mechanistic point of view and needed to be confirmed. The unusual behavior of this salt also prompted us to undertake the present X-ray crystallographic analysis.

Most of the cation of (II) is nearly planar (Fig. 1), but the aromatic ring lies out of the plane, with a $\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 6$ torsion angle of $72.2(2)^{\circ}$. The maximum deviations of the atoms defining the least-squares mean plane through O6, N6, C6, C5, N1 and C13 are observed for C6 and N6, with
respective values of -0.116 and $0.098 \AA$. The atoms of the $\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ ring are also approximately coplanar, with maximum deviations from the least-squares mean plane of $-0.114 \AA$ for C 4 and $0.135 \AA$ for C 3 .

transient hydroxynitrilium ion
The O6-N6-C6-C7 torsion angle of $-5.0(2)^{\circ}$ indicates a E-configured oxime group; the adjacent $\mathrm{C} 6-\mathrm{C} 5$ bond adopts an s-trans conformation [N1-C5-C6-N6 $-170.2(3)^{\circ}$. Such an oxime configuration has also been reported for products resulting from hydroxynitrilium ion trapping (Cousson \& Coustard, 1998, 1999).

Conjugation of the $\mathrm{N} 6=\mathrm{C} 6-\mathrm{C} 5=\mathrm{N} 1$ double-bond system allows delocalization of the positive charge and accounts for the lengthening of both the $\mathrm{C} 6-\mathrm{C} 5$ single bond $[1.469$ (2) \AA, compared with the expected value for a single bond in a dienic conjugated system of 1.455 (11) Å; Allen et al., 1987] and the $\mathrm{C} 6=\mathrm{N} 6$ double bond $[1.290(2) \mathrm{A}$, compared with the expected value in an unconjugated oxime of 1.280 (13) \AA; Allen et al., 1987].

Figure 1
A view of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

The relatively short distance of 2.651 (2) \AA between the O1 atom of the trifluoromethanesulfonate anion and the oxime O6 atom implies a hydrogen bond involving H6 [H6 . . O1 $1.69 \AA$, O6 \cdots O1 2.651 (2) \AA, and O6-H6 \cdots O1 177°].

The $\mathrm{O} 3^{\mathrm{i}} \cdots \mathrm{N} 2$ and $\mathrm{O} 3{ }^{\mathrm{i}} \cdots \mathrm{C} 5$ distances [symmetry code: (i) $\left.1-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$ of 2.855 (2) and 2.873 (2) \AA, respectively, are shorter than expected, the sum of the relevant van der Waals sums (Bondi, 1964) being 3.07 and $3.22 \AA$ A search of the Cambridge Structural Database (Allen \& Kennard, 1993; October 2000 Version) for the fragment $\mathrm{F}_{3} \mathrm{C}-\mathrm{SO}_{3} \cdots \mathrm{~N}=\mathrm{C}$ indicates that about half the 25 or so occurrences have generally similar distances to those above. In the present case, the short distances may result from the formation of some kind of π-adduct between the π-electrons of the $\mathrm{C}=\mathrm{N}$ double bond and the O 3 atom of the trifluoromethanesulfonate anion. In agreement with this hypothesis is the fact that the $O 3^{i}$ atom is almost equidistant from N 2 and C 5 , and the dihedral angle between the $\mathrm{N} 2 / \mathrm{O} 3^{\mathrm{i}} / \mathrm{C} 5$ and $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5$ planes is 97.54°, indicating that they are almost perpendicular.

In conclusion, compound (II) may be considered as resulting from O-protonation of the nitroso group of α-(N-methyl-1-azacyclopent-1-en-2-yl)- α-nitrosotoluene by trifluoromethanesulfonic acid. The oxime group thus formed is E-configured, in agreement with an electrophilic aromatic substitution mechanism involving the $\mathrm{C} \equiv \mathrm{N}$ group of the transient hydroxynitrilium ion (Hegarty et al., 1980; Nguyen et al., 1991).

Experimental

The title compound was prepared as described by Coustard (1999).
Crystal data
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$
$M_{r}=352.33$
Monoclinic, $P 2_{1} / c$
$a=11.7643$ (5) \AA
$b=8.2154$ (4) A
$c=16.5207(6) \AA$
$\beta=104.10(2)^{\circ}$
$V=1548.6 \AA^{3}$
$Z=4$
$D_{x}=1.511 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 11326
\quad reflections
$\theta=1-28^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Plate, colourless
$0.25 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection
Nonius KappaCCD area-detector diffractometer
φ rotation scans with 2° steps
11326 measured reflections
3595 independent reflections
2749 reflections with $I>3 \sigma(I)$

Refinement

Refinement on F
$R=0.044$
$w R=0.054$
$S=1.03$
2749 reflections
209 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O6-N6	$1.3757(18)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.290(2)$
N6-C6	$1.291(2)$		
O6-N6-C6	$112.70(14)$	$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 5$	$110.41(15)$
N1-C5-C4	$111.17(15)$	$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 7$	$124.66(15)$
N1-C5-C6	$126.52(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$124.65(15)$
C4-C5-C6	$122.29(15)$		
N1-C5-C6-N6	$170.0(2)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 6$	$72.0(2)$
O6-N6-C6-C7	$-4.9(2)$		

H atoms on C atoms were placed geometrically and the oxime H atom (H6) was located in a difference Fourier synthesis. C-H distances were fixed at $1.00 \AA$ and the $\mathrm{O}-\mathrm{H}$ distance was fixed at $0.96 \AA$. The oxime H 6 atom had $U_{\text {iso }}(\mathrm{H})=1.55 U_{\text {eq }}(\mathrm{O} 6)$ and the H atoms of the C 13 methyl group had $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$. A common $U_{\text {iso }}$ parameter for all other H atoms converged at 0.046 (2) \AA^{2}.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We thank the CNRS for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1441). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor,
R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Cousson, A. \& Coustard, J. M. (1998). Tetrahedron, 54, 6523-6528.
Cousson, A. \& Coustard, J. M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 469-470.
Coustard, J. M. (1995). Tetrahedron, 51, 10929-10940.
Coustard, J. M. (1996). Tetrahedron, 52, 9509-9520.
Coustard, J. M. (1999). Tetrahedron, 55, 5809-5820.
Hegarty, A. F. (1980). Acc. Chem. Res. 13, 448-454.
Ngyen, M. T., Malone, S., Hegarty, A. F. \& Williams, T. I. (1991). J. Org. Chem. 56, 3683-3687.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K., Carruthers, R. J. \& Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical
Crystallography Laboratory, University of Oxford, England.

